San Simon Barrier Dam Undergraduate Symposium Presentation

CENE 486C

UGRADS

April 30, 2018

Bowei Zeng Jinyang Lu John Garrison Mike Gallio

Table of Contents

Project Introduction/ Background Field Work and Surveying 2 **HEC- RAS Model** Δ **Economic Analysis** 5 **Recommendations** 6 **Project Stats**

Project Introduction

Figure 1. Map of Solomon and Safford Arizona in reference to the San Simon Barrier Dam. [1]

- Location: San Simon Barrier Dam Located near Safford in Southeastern Arizona
- Client: Bureau of Land Management (BLM)
- Flow analysis of unmaintained sediment structure
- Determine dam safety rating using FEMA rating tables
- Perform an economic analysis based on flood analysis results

Stakeholders

- Bureau of Land Management
- Town of Solomon, AZ
- Northern Arizona University
- The engineering team

Figure 2-3. Northern Arizona University logo and Bureau of Land Management logo. [2-3]

Reason for Project

- Evaluate the San Simon Barrier Dams FEMA safety rating
- FEMA rating is determined as a result of catastrophic dam failure
- Recommend a change in FEMA hazard rating to protect against possible flood damage

Figure 4. Original construction document from 1979 showing San Simon Barrier Dam from birds-eye view.

Field Work and Surveying

- Surveyed the dimensions of the San Simon Barrier Dam
- Investigated the local population distribution
- Investigated the local cropland distribution
- Recorded aerial video of the terrain and surrounding area

Figure 5. Picture of baffle blocks located in the San Simon Barrier Dam outlet structure.

Surrounding Area Video

Research and Construction Documents

- Hydraulic Analysis
 - Peak Flow determined to be 27,400 cfs
- Dam Geometry
 - Checked field surveyed geometry of

the San Simon Barrier Dam with

original construction documents

Figure 6. Original 1979 construction document from BLM containing the peak flow used for the hydraulic analysis.

Model Set Up in ArcMap

- ArcMap was used to convert NRCS 10 meter DEM files into usable HEC-RAS geometry files
- The HEC-geoRAS extension was used in ArcMap to establish:
 - River reach
 - Banklines
 - Flowpath
 - Cross sections
- Data was imported into HEC-RAS to run an initial dynamic flow event of 27,400 cfs

Figure 7. ArcGIS elevation map of San Simon Basin created using HEC-geoRAS extension as a raster image.

Model Setup in HEC-RAS

- The model used a Manning's coefficient of 0.06 as directed by the Flood Insurance Study in Graham County, AZ
- Model slope was determined by ArcMap for HEC-RAS
- Unsteady peak flow was set as one event flow hydrograph in order to set the initial dam flow

Figure 8. HEC-geoRAS input from ArcMap to HEC-RAS including river teach, bank lines, flowpath, and cross sections. 10

Flow Hydrograph for Dam Breach

- Initial flow was determined to be 365 cfs as the dams outlet structure capacity
- Dam breach hydrograph was determined by using the NRCS TR-60 & TR-66 calculator [9]
- The dam was removed from the model to simulate the effect of a catastrophic dam failure

Figure 9. San Simon River dam breach hydrograph.

Figure 10. NRCS TR-60 & TR-66 dam breach hydrograph calculator. [9]

HEC-RAS Model Cross Sections Part 1

Figure 11-12. HEC-RAS cross section for STA. 5390 after the simulated San Simon Barrier Dam catastrophic breach and its location on the reach.

HEC-RAS Model Cross Sections Part 2

Figure 13-14. HEC-RAS cross section of the end of the reach at STA. 524 with its location on the reach in reference to the San Simon Barrier Dam

HEC-RAS Model Full Reach

Figure 15. 2D rendition of HEC-RAS 1D unsteady state flow showing max water surface elevation along with banklines and flowpath.

HEC-RAS Peak Flow Event Results

- Max depth in San Simon Barrier Dam outlet structure was 14.2 feet deep which was used to calculate the initial flow of 365 cfs for the dam breach
- Average velocity of water was 1.25 ft/s (will not cause scouring)
- Water overbanks the cross sections downstream of the dam breach

Figure 16. Original construction document from 1979 showing San Simon Barrier Dam from birds-eye view.

Economic Analysis System

- Cotton and Cottonseed: \$655.68 / acre [8]
- Arizona average cropland value is \$8,400 USD per acre in 2017 [7]
- Transportation structure.

Figure 17. Affected area near Solomon, AZ [1].

Economic Impact Analysis Method

Table 1. Criteria of zoning and rates of Property Damage of areas inundated by dam-break flood(RESCDAM) [5]

Area category	Zoning Standard				Indirect loss factor()
	Submerged depth(ft)	Maximum flow rate(cfs)	Flooding duration(h)	Property loss rate%	/ %)
Breakout area	>10	>70.0	>12	100	60
Destruction Area	6.8-10	>70.0	>12	90	57
Severe disaster					
area	3.4-6.8	35.0-70.0	>24	Calculated with	50
Moderate disaster area	1.7-3.4	17.5-35.0	>120	general flood property loss rate	45
Light disaster					
area	0.34-1.7	3.5-17.5	<48	10	30
Safe area	0-0.34	0-3.5	<0.5	0	10

Dam breach economic loss formula [#]: $S = \alpha W (1 + \lambda)$

- S is the dam economic total loss (\$);
- α is the dam flood loss property loss rate;
- W is the property value (\$) in the submerged area;
- λ is the indirect economic loss conversion factor of dam break;
- αW is the direct economic loss caused by dam collapse.

Final design

The depth in agriculture field is 0.35 ft. 300 acre cropland is impacted. Total economic loss: 25576 USD

Table 2: Hazard Ratings and Qualifying Criteria, ADWR Standards [6]

Hazard Potential Classification	Loss of Human Life	Economic, Environmental, Lifeline Losses
Low	None expected	Low and generally limited to owner
Significant	None expected	Yes
High	Probable. One or more expected	Yes (but not necessary for this classification)

Figure 18. Affected area near Solomon, AZ [1].

Project Staffing Hours And Cost

Table 3: Actual Staffing Costs

	Cost Per Hour	Estimated Time (Hours)	Estimated Cost For Project	Actual Used Time (Hours)	Actual Cost For Project
Principle	\$92.75	86	\$7,976.50	100	\$9,275.00
Manager	\$95.50	137	\$13,083.50	40	\$3,820.00
PE	\$30.00	27	\$810.00	200	\$6,000.00
EIT	\$50.50	86	\$4,343.00	75	\$3,787.50
Drafter	\$37.75	62	\$2,340.50	10	\$377.50
Intern	\$22.50	60	\$1,350.00	75	\$1,687.50
Survey	\$41.25	140	\$5,775.00	12	\$495.00
Admin	\$35.50	1	\$35.50	5	\$177.50
	Total:	599	\$35,714.00	517	\$25,620.00

Schedule Proposed vs. Actual

Table 4: Schedule of Project

Task #	Tool	Original		Actual	
	I ask	Start	Finish	Start	Finish
1.0	Field Investigation	1/17/2018	1/21/2018	<mark>1/18/2018</mark>	1/18/2018
2.0	Hydrology	1/22/2018	1/26/2018	1/19/2018	4/9/2018
3.0	Hydraulic Analysis	1/27/2018	3/30/2018	3/17/2018	3/28/2018
4.0	Eco-Economic Impact	3/20/2018	4/10/2018	4/4/2018	4/22/2018
5.0	Project Deliverables	4/15/2018	4/28/2018	4/15/2018	

Acknowledgments

• CENE 486C Instructors:

- Mark Lamer
- Alarick Reiboldt
- Dianne McDonnell
- Bill Mancini
- Technical Advisor: Dr. Wilbert Odem
- Client: Bureau of Land Management office in Safford, Arizona

References

[1] Google Maps. [Online]. Available: https://www.google.com/maps/@32.7999373,-109.6429961,9967m/data=!3m1!1e3?hl=en&authuser=0. [Accessed: 23-Feb-2018].

[2] "Institution Logos | Northern Arizona University", Northern Arizona University, 2018. [Online]. Available: https://nau.edu/marketing/institution-logos/. [Accessed: 25- Apr- 2018].

[3] "BUREAU OF LAND MANAGEMENT | U.S. DEPARTMENT OF THE INTERIOR", Blm.gov, 2018. [Online]. Available: https://www.blm.gov/. [Accessed: 25- Apr- 2018].

[5] O. Setyandito, "Development of Rescue Actions Based on Dam-Break Flood Analysis", europa.eu, 2018. [Online]. Available: http://ec.europa.eu/echo/files/civil_protection/civil/act_prog_rep/rescdam_rapportfin.pdf. [Accessed: 25- Apr- 2018].

[6]Federal guidelines for dam safety: hazard potential classification system for dams. Washington, D.C., Az: U.S. Dept. of Homeland Security, Federal Emergency Management Agency, 2004, pp. 5–6.

[7] Munneke, H. and Womack, K. (2017). Valuing the Redevelopment Option Component of Urban Land Values. Real Estate Economics.

[8] "Cotton Production Costs and Returns: United States", Cotton.org, 2018. [Online]. Available: http://www.cotton.org/econ/cropinfo/costsreturns/usa.cfm. [Accessed: 25- Apr- 2018].

[9]"Dam Breach Hydrographs | NRCS", *Nrcs.usda.gov*, 2018. [Online]. Available: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/water/manage/hydrology/?cid=nrcseprd612206. [Accessed: 27- Apr-2018].

